Sains Malaysiana 53(9)(2024):
3135-3147
http://doi.org/10.17576/jsm-2024-5309-18
Diimide-Mediated
Hydrogenation of Nitrile Butadiene Rubber
(Penghidrogenan Pengantaraan Diimida bagi Getah Nitril Butadiena)
AMIRA SHAFIQA SALLEH HUDDIN1, YI-FAN
GOH2, NAHARULLAH JAMALUDDIN3 & SITI FAIRUS
MOHD YUSOFF1,4,*
1Department of Chemical Sciences, Faculty of
Science andTechnology, Universiti Kebangsaan Malaysia, 43600UKM Bangi,
Selangor, Malaysia
2Asia Innovation Centre (AIC), Synthomer Sdn Bhd, Kawasan Perindustrian i-Park, Bandar Indahpura, 81000
Kulai, Johor, Malaysia
3Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia,
81310 Skudai, Johor, Malaysia
4Polymer Research Centre (PORCE), Faculty of
Science andTechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 19 January 2024/Accepted: 19 July 2024
Abstract
The hydrogenation of nitrile butadiene rubber
(NBR) has shown great potential for improving its physical, thermal,
mechanical, and chemical stability. Hydrogenation process of NBR in this work
involved the utilization of diimide produced from the
interaction between hydrazine hydrate (N2H4) and hydrogen
peroxide (H2O2), with the addition of boric acid as a
promoter. Attenuated total reflectance Fourier transform infrared (ATR-FTIR),
differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and
X-ray diffraction (XRD) were used to evaluate the degree of hydrogenation,
glass transition, thermal stability, and rubber crystallinity, respectively.
The highest hydrogenation degree was 99%, which resulted in a 57% gel content.
Upon hydrogenation, both the glass transition temperature (Tg) and decomposition temperature
(Td) increased. The hydrogenated
rubber samples generally showed an amorphous state, except for the 99%
hydrogenated sample, which displayed a semi-crystalline state. However, using diimide for direct hydrogenation yields a side reaction
from the free radicals in the system, which leads to gel formation.
Optimization was accomplished by employing the response surface methodology
(RSM), which entailed manipulating parameters such as the total solid content
(TSC) of NBR, reaction time, and the mole ratio of H2O2 to N2H4, to reduce the percentage of gel content. The RSM
analysis identified the optimum reaction conditions as a 1:1 mole ratio of H2O2:
N2H4 and 25% TSC, with a reaction time of 8 h, which
yielded 32% gel content percentage, where a mole ratio of H2O2 to N2H4 and reaction time indicated a synergistic effect,
whereas TSC denoted an antagonistic effect.
Keywords: Diimide; gel
content; hydrogenation; nitrile butadiene rubber; response surface methodology
Abstrak
Penghidrogenan getah nitril butadiena (NBR) telah menunjukkan potensi besar untuk meningkatkan kestabilan fizikal, haba, mekanik dan kimianya.
Proses penghidrogenan NBR dalam kajian ini melibatkan penggunaan diimida yang dihasilkan daripada interaksi antara hidrazin hidrat (N2H4) dan hidrogen peroksida (H2O2), dengan penambahan asid borik sebagai promoter. Spektroskopi jumlah pantulan dilemahkan- inframerah transformasi Fourier
(ATR-FTIR), kalorimetri imbasan pembezaan (DSC), analisis termogravimetrik (TGA) dan pembelauan sinar-X (XRD), digunakan untuk menilai darjah penghidrogenan, peralihan kaca, kestabilan terma dan sifat kehabluran getah. Darjah penghidrogenan tertinggi yang dicapai ialah 99%, menghasilkan kandungan gel sebanyak 57%. Selepas penghidrogenan, kedua-dua suhu peralihan kaca (Tg) dan suhu penguraian (Td) meningkat. Sampel getah terhidrogenasi menunjukkan keadaan amorfus, manakala sampel getah dengan 99% peratusan penghidrogenan, memaparkan keadaan separa kristal. Walau bagaimanapun, diimida menghasilkan tindak balas sampingan daripada radikal bebas dalam sistem,
yang membawa kepada pembentukan gel. Pengoptimuman dicapai dengan menggunakan kaedah rangsangan permukaan (RSM), dengan menggunakan parameter yang dimanipulasi, iaitu jumlah kandungan pepejal (TSC) NBR, masa tindak balas dan nisbah mol H2O2 kepada N2H4, untuk mengurangkan peratusan kandungan gel. Analisis RSM mengenal pasti keadaan tindak balas optimum sebagai nisbah mol 1:1 H2O2:N2H4 dan 25% TSC, dengan masa tindak balas selama 8 jam yang menghasilkan 32% kandungan gel dengan nisbah molar H2O2 kepada N2H4 menunjukkan kesan sinergistik, sementara TSC dan masa tindak balas menunjukkan kesan antagonis.
Kata kunci: Diimida; getah nitril butadiena; kandungan gel; kaedah rangsangan permukaan; penghidrogenan
REFERENCES
Ameh, E.S. 2019. A review of basic crystallography and x-ray
diffraction applications. The International Journal of Advanced
Manufacturing Technology 105(7): 3289-3302.
Aziz, T., Fan, H., Khan, F.U.,
Haroon, M. & Cheng, L. 2019. Modified silicone oil types, mechanical
properties and applications. Polymer Bulletin 76(4): 2129-2145.
De Sarkar, M., De, P.P. &
Bhowmick, A.K. 2000. Diimide reduction of carboxylated styrene – butadiene
rubber in latex stage. Polymer 41(3): 907-915.
Herlinawati, E., Montoro, P.,
Ismawanto, S., Syafaah, A., Aji, M., Giner, M., Flori, A., Gohet, E. &
Oktavia, F. 2022. Dynamic analysis of tapping panel dryness in Hevea brasiliensis reveals new insights on this physiological syndrome affecting latex production. Heliyon 8(10): 10920.
Li, C.Y. 2020. The rise of
semicrystalline polymers and why are they still interesting. Polymer 211: 123150.
Liang, L., Dong, J. & Yue, D. 2019.
Branched EHNBR and its properties with enhanced low-temperature performance and
oil resistance. RSC Advances 9(55): 32130-32136.
Lin, X. 2005. Hydrogenation of
unsaturated polymers in latex form. Ph.D. Thesis, University of Waterloo,
Ontario, Canada (Unpublished).
Liu, X., Fu, Y., Zhou, D., Chen, H.,
Li, Y., Song, J., Zhang, S. & Wang, H. 2022. Hydrogenation of carboxyl
nitrile butadiene rubber latex using a ruthenium-based catalyst. Catalysts 12(1): 97.
Liu, J., Sun, J., Zhang, Z., Yang, H.
& Nie, X. 2020. One-step synthesis of end-functionalized hydrogenated
nitrile-butadiene rubber by combining the functional metathesis with
hydrogenation. ChemistryOpen 9(3): 374-380.
Luo, Z.H., Feng, M., Lu, H., Kong,
X.X. & Cao, G.P. 2019. Nitrile butadiene rubber hydrogenation over a
monolithic Pd/CNTs@Nickel foam catalysts: Tunable CNTs morphology effect on
catalytic performance. Industrial and Engineering Chemistry Research 58(5): 1812-1822.
Mandlekar, N., Joshi, M. &
Butola, B.S. 2022. A review on specialty elastomers based potential inflatable
structures and applications. Advanced Industrial and Engineering Polymer
Research 5(1): 33-45.
Mutia Anissa Marsya, Bismo Dwi
Putranto, Santi Puspitasari, Adi Cifriadi & Mochamad Chalid 2019. Catalyst
screening on diimide transfer hydrogenation of natural rubber latex catalyst
screening on diimide transfer hydrogenation of natural rubber latex. IOP
Conference Series: Materials Science and Engineering 509: 012078.
Ngudsuntear, K., Limtrakul, S. &
Arayapranee, W. 2022. Synthesis of hydrogenated natural rubber having epoxide
groups using diimide. ACS Omega 7(25): 21483-21491.
Nguyen Duy, H., Rimdusit, N., Tran
Quang, T., Phan Minh, Q., Vu Trung, N., Nguyen, T.N., Nguyen, T.H., Rimdusit,
S., Ougizawa, T. & Tran Thi, T. 2021. Improvement of thermal properties of
Vietnam deproteinized natural rubber via graft copolymerization with
styrene/acrylonitrile and diimide transfer hydrogenation. Polymers for
Advanced Technologies 32(2): 736-747.
Petrukhina, N.N., Golubeva, M.A.
& Maksimov, A.L. 2019. Synthesis and use of hydrogenated polymers. Russian
Journal of Applied Chemistry 92(6): 715-733.
Puspitasari, S., Falaah, A.F. &
Zanki, A.N. 2019. Selection of stabilizer and coagulant for natural rubber
latex colloidal system during diimide catalytic hydrogenation at semi pilot
scale reaction Selection of stabilizer and coagulant for natural rubber latex
colloidal system during diimide catalytic hy. IOP Conference Series: Materials
Science and Engineering 509: 012128.
Shahrul Fizree Idris, M., Hanis Adila
Azhar, N., Firdaus, F., Efliza Ashari, S. & Fairus Mohd Yusoff, S. 2019.
Effect of temperature, time and diimide/rubber ratio on the hydrogenation of
liquid natural rubber by response surface methodology. Indonesian Journal of
Chemistry 19(4): 882-891.
Wang, X., Sun, J., Xia, L., Wang, C.,
Kim, J.K. & Zong, C. 2020. Kinetics of hydrogenation of acrylonitrile
butadiene rubber: A latex-based in situ and low-temperature approach. Colloid
and Polymer Science 298(11): 1501-1513.
Wong, J.L.O., Munusamy, Y. & Ong,
K.S. 2019. Effect of total solids content of nitrile rubber latex on coating
performance of phase change material. AIP Conference Proceedings 2157:
020046.
Yew, G.Y., Tham, T.C., Show, P.L.,
Ho, Y.C., Ong, S.K., Law, C.L., Song, C. & Chang, J.S. 2020. Unlocking the
secret of bio-additive components in rubber compounding in processing quality
nitrile glove. Applied Biochemistry and Biotechnology 191: 1-28.
Yusof, M.J.M., Tahir, N.A.M.,
Firdaus, F. & Yusoff, S.F.M. 2018. Diimide reduction of liquid natural
rubber in hydrazine hydrate/hydrogen peroxide system: A side reaction study. Malaysian
Journal of Analytical Sciences 22(6): 1023-1030.
Zhang, J., Wang, C., Zao, W., Feng,
H., Hou, Y. & Huo, A. 2020. High-performance nitrile butadiene rubber
composites with good mechanical properties, tunable elasticity, and robust
shape memory behaviors. Industrial and Engineering Chemistry Research 59(36): 15936-15947.
Zhou, S., Bai, H. & Wang, J.
2004. Hydrogenation of acrylonitrile - butadiene rubber latexes. Journal of
Applied Polymer Science 91(4): 2072-2078.
*Corresponding author; email:
sitifairus@ukm.edu.my
|